If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+10t-80=0
a = 1; b = 10; c = -80;
Δ = b2-4ac
Δ = 102-4·1·(-80)
Δ = 420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{420}=\sqrt{4*105}=\sqrt{4}*\sqrt{105}=2\sqrt{105}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{105}}{2*1}=\frac{-10-2\sqrt{105}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{105}}{2*1}=\frac{-10+2\sqrt{105}}{2} $
| a/7=55 | | 10x-30+14x-20=8 | | t-0.7=9 | | 3x-7=15-2x | | 2x2+38x=0 | | 20+30x=160-2x | | x+8+3x=−4x+8 | | 3x-5x+20=30 | | 9y+13=-6y-42 | | 7-a/3=2a/6+3 | | 15-5b=6b+4b | | 4(x+3)-x=4x+11 | | u+5.9=10.3 | | -40+x=-36 | | -3(5x-7)=32 | | 0.2x-1.1)/5=0.5 | | 7(x+7)=9x+7-2x+42 | | C=250t+2570 | | 4=-1/6x+9 | | 25;x+40=65,3x-10=65 | | 5x-20+3x=40 | | 4c+14=22 | | 20;5x=100,4x=80 | | x=115,x-50=65 | | 3(-2)-14=8-6a | | -5x+2(x-2)=26 | | 7x−6=9x+69x+6 | | 2x-3=4x+1-x-5 | | 8y+3=101 | | 3(x-7)^2=147 | | 2x^2-0.25x-1.5=0 | | 11t/48-t/4=1 |